The Ups & Downs of Gene Expression:

Using Lipid-Based Transfection and RT-qPCR to Deliver Perfect Knockdown and Achieve Optimal Expression Results

Hilary Srere, Ph.D.

Topics

- What is RNAi?
- Methods of Delivery and Detection
- RNA Preparation
- Reverse Transcription
- qPCR Detection
- Case Study: ODC Pathway

BIO RAD

Gene Expression Division

What is RNAi?

RNA interference (RNAi) is a phenomenon where dsRNA specifically blocks the expression of its homologous gene. Also known as post-transcriptional gene silencing (PTGS) and quelling.

1990 RNAi was discovered as an endogenous property in petunias

- 1998 Fire & Mello at the Carnegie in Washington showed gene silencing pathway in c.elegans
- 2000 Tuschl and Elbashir at the Max Planck Institute showed that short interfering RNAs could be introduced into mouse cells.

Why is RNAi so powerful?

- Allows fast characterization of gene /
 protein function
- Enables study of pathways
- Facilitates rapid identification and validation of targets
- Therapeutic potential

Molecular Biology and RNAi

Central Dogma of Molecular Biology:

Basic RNA interference Mechanism:

Topics

- What is RNAi?
- Methods of Delivery and Detection
- RNA Preparation
- Reverse Transcription
- qPCR Detection
- Case Study: ODC Pathway

RNAi: Challenge of Delivery

Gene Expression Division

What delivery method is best?

- Electroporation good for suspension & difficult cells
- Biolistics good for neural & primary cells
- MicroInjection offers greatest specificity
- Viral very high efficiency
- Lipid Mediated low cost, simple protocol, consistent results, good for high throughput applications

Lipid Mediated Delivery

Gene Expression Division

Three Major Lipid Characteristics to Consider:

- Design / Development
- Efficiency
- Toxicity

Silencing (siRNA Activity)

Test siRNA vs. nonSpecific Control siRNA

Experimental Design: Controls

How this will look as Data.....

BIO RAD

How this will look as Data.....

Efficiency: siRNA Amount

CHO-Luc / siLentFect – 0.3 µl (96-well)

Toxicity Evaluations

Visual Analysis

- Morphology changes
- Detachment
- Lysis

Low

Moderate

High

RNAi Detection Strategies

- Western Blots
- Northern Blots
- MicroArrays
- qPCR
 - 1.0 Cycle Threshold = 50% silencing
 - 3.3 Cycle Threshold = 90% silencing
 - 6.6 Cycle Threshold = 99% silencing

CHO-lacZ cells transfected with scrambled siRNA control (top) and beta-gal siRNA (bottom)

Detection: qPCR Analysis

GAPDH, Primary Fibroblasts, 48 hr, 6-well

- 5.9 C_t Difference
- Over 95% knockdown
- 1.25 μl siLentFect
- 10 nM siRNA

Detection: qPCR Analysis

GAPDH, HeLa Cells, 48 hr, 6-well

- - 5.6 C, Difference
 - Over 95% knockdown
 - 1.25 µl siLentFect
 - 10nM siRNA

Topics

- What is RNAi?
- Methods of Delivery and Detection
- RNA Preparation
- Reverse Transcription
- qPCR Detection
- Case Study: ODC Pathway

RNA Preparation

- Extract RNA (DNase treatment optional)
- Analyze RNA, careful quantification is necessary: RiboGreen assay Experion[™] System

Experion System Data

Gene Expression Division

BIO RAL

Topics

- What is RNAi?
- Methods of Delivery
- RNA Preparation
- Reverse Transcription
- qPCR Detection
- Case Study: ODC Pathway

Testing the Reverse Transcriptase

BIO RAL

Reproducibility of RT

No discrimination at low Concentration

No detection at 1 pg

Dynamic Range of iScript

PCR Standard Curve: kp120103.opd

Topics

- What is RNAi?
- Methods of Delivery and Detection
- RNA Preparation
- Reverse Transcription
- qPCR Detection
- Case Study: ODC Pathway

What makes for a good qPCR?

- High Sensitivity
- Good Reproducibility
- Broad Dynamic Range

Beta-actin target, FAM-labeled probe, $1\mu g$ to 100fg input

Topics

- What is RNAi?
- Methods of Delivery and Detection
- RNA Preparation
- Reverse Transcription
- qPCR Detection
- Case Study: ODC Pathway

Case Study: Polyamine Pathway

Gene Expression Division

BIO RAD

Points of Regulation

Central Dogma of Molecular Biology:

Down regulation of ODC

Gene Expression Division

ODC, Primary Fibroblasts, 48 hr, 6-well

Effect of ODC Down Regulation

BIO RAD

Effect of DFMO Treatment

ODC

SAMDC

Summary

- Transfection of primary fibroblasts with anti-ODC siRNA
 - results in a reduction of cellular ODC protein levels
 - results in up regulation of SAMDC transcript levels
 - regulatory enzymes OAZ and AZI were not affected (at the level of mRNA)
- Application of DFMO, which inactivates ODC protein
 - does not affect ODC transcript levels
 - results in the up regulation of SAMDC transcript levels

Summary continued

RNAi: Perfect Knockdown

- Choose a high quality RNA purification method (garbage in = garbage out)
- Good RT is critical to accurate transcript quantification
- Use a good, quantitative detection method: qPCR provides a fast, accurate, sensitive method for RNAi analysis

