The Ups & Downs of Gene Expression:

Using Lipid-Based Transfection and RT-qPCR to Deliver Perfect Knockdown and Achieve Optimal Expression Results

Hilary Srere, Ph.D.
Topics

• What is RNAi?
• Methods of Delivery and Detection
• RNA Preparation
• Reverse Transcription
• qPCR Detection
• Case Study: ODC Pathway
What is RNAi?

RNA interference (RNAi) is a phenomenon where dsRNA specifically blocks the expression of its homologous gene. Also known as post-transcriptional gene silencing (PTGS) and quelling.

1990 RNAi was discovered as an endogenous property in petunias.

2000 Tuschl and Elbashir at the Max Planck Institute showed that short interfering RNAs could be introduced into mouse cells.
The Power of RNA Interference

Why is RNAi so powerful?

• Allows fast characterization of gene / protein function
• Enables study of pathways
• Facilitates rapid identification and validation of targets
• Therapeutic potential
Molecular Biology and RNAi

Central Dogma of Molecular Biology:

Basic RNA interference Mechanism:
Topics

- What is RNAi?
- Methods of Delivery and Detection
- RNA Preparation
- Reverse Transcription
- qPCR Detection
- Case Study: ODC Pathway
RNAi: Challenge of Delivery

What delivery method is best?

• Electroporation – good for suspension & difficult cells
• Biolistics – good for neural & primary cells
• MicroInjection – offers greatest specificity
• Viral – very high efficiency
• Lipid Mediated – low cost, simple protocol, consistent results, good for high throughput applications
Lipid Mediated Delivery

Three Major Lipid Characteristics to Consider:

• Design / Development
• Efficiency
• Toxicity

Silencing (siRNA Activity)
Experimental Design: Controls

Test siRNA vs. nonSpecific Control siRNA

- Test siRNA:
 - RISC Binding
 - Target mRNA Binding
 - No Protein

- nonSpecific Control siRNA:
 - RISC Binding
 - No Specific mRNA Binding
 - Translation
Experimental Design: Controls

How this will look as Data……..

- **Luciferase Expression (RLUs)**
- **µl Lipid**

Data representation:
- **Control (Low Tox)**
- **Test**
Experimental Design: Controls

How this will look as Data…….

![Graph showing Luciferase Expression (RLUs) vs. \(\mu \text{l Lipid} \)]

- Red line: Control (Toxic)
- Blue line: Test
Efficiency: siRNA Amount

CHO-Luc / siLentFect – 0.3 µl (96-well)
Toxicity Evaluations

Visual Analysis
- Morphology changes
- Detachment
- Lysis

Low
Moderate
High
RNAi Detection Strategies

- Western Blots
- Northern Blots
- MicroArrays
- qPCR
 - 1.0 Cycle Threshold = 50% silencing
 - 3.3 Cycle Threshold = 90% silencing
 - 6.6 Cycle Threshold = 99% silencing

CHO-lacZ cells transfected with scrambled siRNA control (top) and beta-gal siRNA (bottom)
Detection: qPCR Analysis

GAPDH, Primary Fibroblasts, 48 hr, 6-well

- 5.9 C_t Difference
- Over 95% knockdown
- 1.25 µl siLentFect
- 10 nM siRNA

Gene Expression Division
Detection: qPCR Analysis

GAPDH, HeLa Cells, 48 hr, 6-well

- 5.6 C_t Difference
- Over 95% knockdown
- 1.25 μl siLentFect
- 10nM siRNA
Topics

• What is RNAi?
• Methods of Delivery and Detection
• RNA Preparation
• Reverse Transcription
• qPCR Detection
• Case Study: ODC Pathway
RNA Preparation

• Extract RNA (DNase treatment optional)

• Analyze RNA, careful quantification is necessary:
 RiboGreen assay
 Experion™ System
Experion System Data
Topics

- What is RNAi?
- Methods of Delivery
- RNA Preparation
- Reverse Transcription
- qPCR Detection
- Case Study: ODC Pathway
Testing the Reverse Transcriptase

RNA → cDNA
RT Efficiency: Its Effect on the Assay

RNA → cDNA

Reality?

Reproducible Data

Not Reproducible
Reproducibility of RT

No discrimination at low Concentration
No detection at 1 pg
Dynamic Range of iScript

1.6 x 10^7
1.6 x 10^6
1.6 x 10^5
1.6 x 10^4
1.6 x 10^3
1.6 x 10^2
1.6 x 10^1
1.6 x 10^0
Topics

• What is RNAi?
• Methods of Delivery and Detection
• RNA Preparation
• Reverse Transcription
• qPCR Detection
• Case Study: ODC Pathway
What makes for a good qPCR?

- High Sensitivity
- Good Reproducibility
- Broad Dynamic Range
Dynamic Range of One-Step RT-qPCR

Beta-actin target, FAM-labeled probe, 1µg to 100fg input

$r = 1.000$, slope = -3.39, efficiency = 97.2%
Topics

• What is RNAi?
• Methods of Delivery and Detection
• RNA Preparation
• Reverse Transcription
• qPCR Detection
• Case Study: ODC Pathway
Case Study: Polyamine Pathway

Gene Expression Division
Points of Regulation

Central Dogma of Molecular Biology:

Replication → DNA → Transcription → mRNA → Translation → Protein

Gene Expression Division
Down regulation of ODC

ODC, Primary Fibroblasts, 48 hr, 6-well

- 4.7 CT Difference
- Over 90% knockdown
- 2 µl siLentFect
- 10 nM siRNA

Gene Expression Division
Effect of ODC Down Regulation

ODC

SAMDC

OAZ

AZI

Control

Anti-ODC

Gene Expression Division
Effect of DFMO Treatment

ODC

Control: 25, 38.5, 24.5
DFMO: 27.3, 24.7, 24.2

OAZ

DFMO: 24.4, 23.8, 24

SAMDC

AZI
Summary

- Transfection of primary fibroblasts with anti-ODC siRNA
 - results in a reduction of cellular ODC protein levels
 - results in up regulation of SAMDC transcript levels
 - regulatory enzymes OAZ and AZI were not affected (at the level of mRNA)

- Application of DFMO, which inactivates ODC protein
 - does not affect ODC transcript levels
 - results in the up regulation of SAMDC transcript levels
RNAi: Perfect Knockdown

- Choose a high quality RNA purification method (garbage in = garbage out)
- Good RT is critical to accurate transcript quantification
- Use a good, quantitative detection method: qPCR provides a fast, accurate, sensitive method for RNAi analysis