

Pitfalls in qPCR

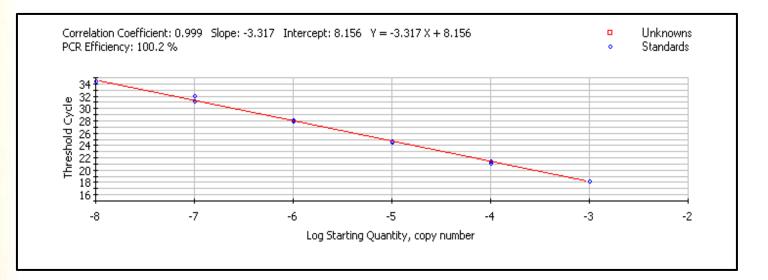
Primer and probe design and synthesis

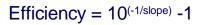
Mary Span Eurogentec S.A.

Steps in qPCR assay

- Set up experiment
 - statistical relevant # samples/experimental group
 - controls
- Design and synthesis primers and probes
- RNA extraction
 - quality of RNA
- Reverse Transcription reaction
 - one step or two step reaction
- qPCR reaction
 - singleplex or multiplex
- Data analysis

PCR efficiency


- High PCR efficiency
 - high accuracy
 - high reproducibility
- PCR efficiency influenced by
 - length of amplicon
 - GC content of amplicon
 - secondary structures in primers, probes, amplicons
 - concentration reaction components
 - PCR inhibitors/PCR enhancers
 - quality RNA/cDNA



PCR efficiency

 Easiest way to determine PCR efficiency: standard curve with R² close to 1,00 and intercept close to -3,32

Exponential amplification = 10^(-1/slope)

TEC

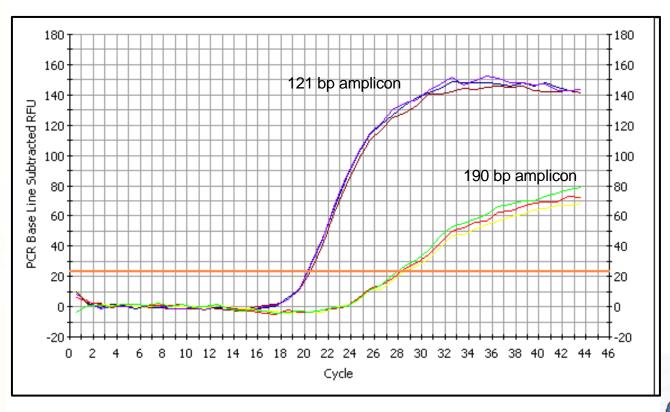
EGT GROUP

PCR efficiency

- 100% PCR efficiency
 - every PCR cycle amount of DNA is doubled
 - -2x dilution curve ΔCt of 1 between every dilution
 - 10x dilution curve Δ Ct of 3,2 between every dilution
- Variation coefficient (R²)
 - indication how well data points lie on one straight line
 - low R² indication for pipetting mistakes, inaccurate way of working, diluting out inhibitory factors

Why do you need a good design?

- Well-designed primers and probes are a prerequisite for successful RT qPCR in terms of
 - high PCR efficiencies
 - specific PCR products
 - no co-amplification of genomic DNA
 - no amplification of pseudogenes
 - most sensitive results

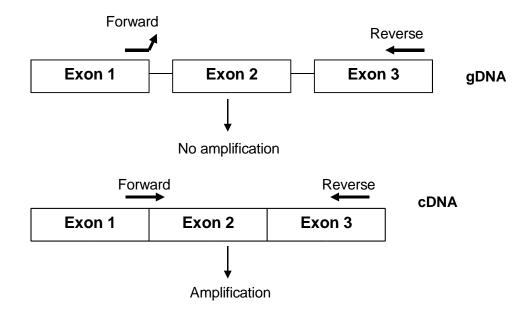


Design makes the difference!

Comparison between two different primer-probe sets for 18S rRNA using same reaction components and experimental conditions

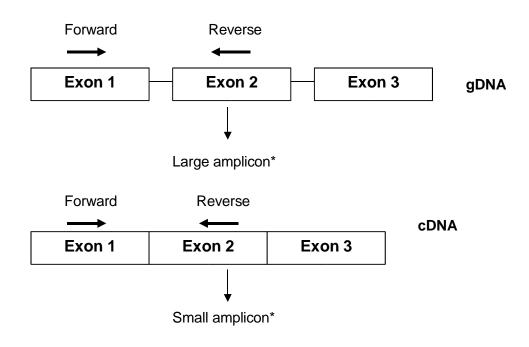
Design guidelines for primers

- **Primers**
 - length
 - 18-30 bases
 - GC content
 - 30-80% (ideally 40-60%)
 - Tm
 - 63-67°C (ideally 64°C), so that Tannealing is 58-62°C (ideally 59°C)
 - ΔTm forward primer and reverse primer < 4°C
 - avoid mismatches between primers and target, especially towards the 3' end of the primer
 - avoid runs of identical nucleotides, especially of 3 or more Gs or Cs at the 3' end
 - avoid 3' end T (allows mismatching)
 - avoid complementarity within the primers to avoid hairpins (check using a software)
 - avoid complementarity between the primers, especially at 2 or more bases at the 3' ends of the primers to avoid primer-dimers (check using a software)
 - design intron spanning or flanking primers to avoid co-amplification of genomic DNA (only possible in multiple exon genes, in single exon genes perform DNase I treatment of samples with RNase free DNase (Vandesompele, 2002))


- # Positions of exons and introns can be found in NCBI
 - LocusLink databases (www.ncbi.nlm.nih.gov/LocusLink/)

Intron spanning/flanking primers

• Intron spanning primers



Intron spanning/flanking primers

Intron flanking primers

* Can be detected via melt curve

Design guidelines for probes

- 5' Exonuclease probes
 - length
 - 18-30 bases (>30 bases required, use internal quencher on dT around 20th base)
 - Optimal: 20
 - lengths over 30 bases are possible, but it is recommended to position the quencher not at the 3' end, but internally 18-25 bases from the 5' end
 - GC content
 - 30-80%
 - Tm
 - Tm of the probe must be 8-10°C higher than the Tm of the primers (8°C for genotyping, 10°C for expression profiling)
 - select the strand that gives the probe more Cs than Gs
 - place probe as close as possible to primers without overlapping them
 - avoid mismatched between probe and target
 - avoid runs of identical nucleotides, especially of 4 or more Gs
 - avoid 5' end G (quenches the fluorophore)
 - avoid complementarity of the probe with either of the primers (check using a software)
 - for multiplex assays: for genotyping
 - position the polymorphism in the center of the probe
 - adjust the probe length so that both probes have the same Tm

Design guidelines for amplicons

- Amplicon
 - length for SYBR[®] green I assays:
 - 80-150 bp
 - shorter amplicons will give higher PCR efficiencies
 - longer amplicons will give a higher ΔRn as more SYBR[®] green I is incorporated
 - length for 5' exonuclease probe assays:
 - 80-120 bp
 - shorter amplicons will give higher PCR efficiencies
 - shorter amplicons will give more efficient 5' nuclease reactions
 - GC content
 - 30-80% (ideally 40-60%)
 - avoid secundary structures in the amplicon (check with Mfold: www.bioinfo.rpi.edu/applications/mfold/)
 - check if generate amplicon is unique by submitting primers (and probe) to a BLAST search (www.ncbi.nlm.nih.gov/BLAST/)

Frequent pitfalls

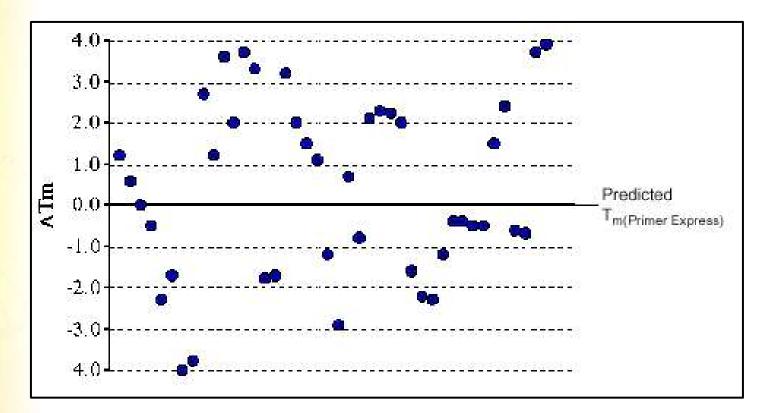
- I do already have existing primers of a normal PCR, but can not find a good probe to fit them. What should I do?
 - Although it is disappointing to hear, it is best to do the design from scratch. The criteria for primers are less stringent as for probes.
- I have used a design software to design my primers and probes, but it do not get them to work properly
 - A design software is not a 100% guarantee to get a good primer/probe set, but is a good tool to make your life easier
 - Especially with SYBR[®] green I assays; try several primer sets as *in* silico differs from experimental

Frequent pitfalls

- The design software that I use can not find a suggestion, although the sequence if have inserted is more than 500 bases long
 - It is not always possible to design a primer/probe set for a specific sequence due to GC/AT rich sequences, repeats or secundary structures)
 - In most cases you can already see the most homogenous part of your sequence by eye. This is the best part to design your primers and probe on
 - Sometimes you can force the software to design a primer-probe set by changing the parameters like ampilicon length, primer length, Tm's or GC content

Frequent pitfalls

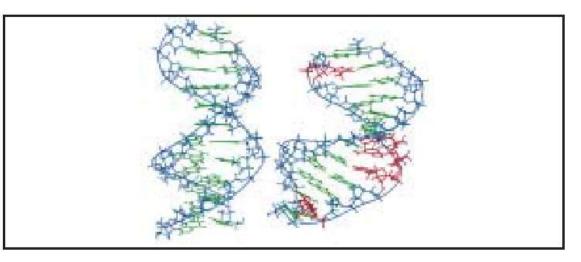
- I took the first suggestion in the list of Primer Express[®], but the primer/probe set does not lead to good results
 - The first suggestion in the list of Primer Express[®] is the shortest amplicon, not the best primer/probe set
- With the recommended temperature profile I obtain an amplicon, but the detection does not function due to the probe, which is not binding
 - Each software uses its own method of calculating the Tm and there can be a difference between the calculated and experimental temperature
 - If the probe does not bind to the amplicon then the annealing temperature is too high in comparison to the Tm of the probe
 - Check Tm using several softwares.
 - If Tm's differ > 3°C check Tm experimentally



Predicted vs. experimental Tm

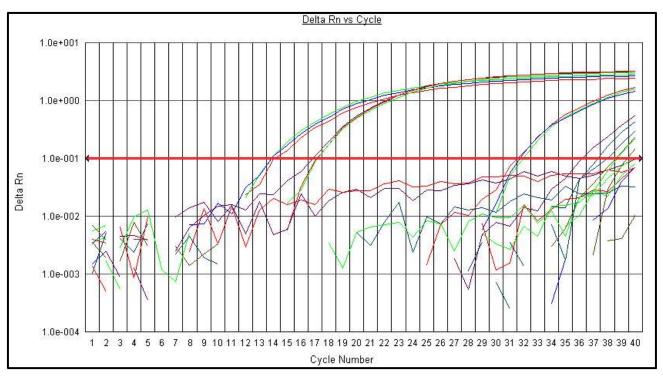
GENOMICS

Source: ABI User Bulletin 6 ABI PRISM® Sequence Detection System



Probe too long or Tm too low?

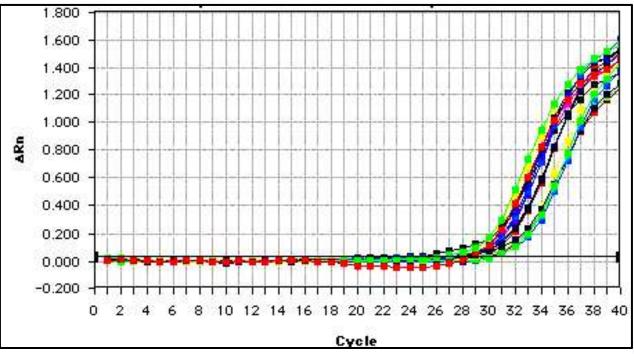
- AT rich sequence: long probes required to reach correct Tm
- SNP detection: short probes required to increase specificity
- With LNA bases length probes can be decreased or Tm can be increased



Conformation change from B helix to A helix due to LNAs

Example probe assay

• "Jump" in dilution series caused by secondary structure in primer



Example SYBR[®] green I assay

 Ct's of all dilutions around same point due to primer dimers

Choice of fluorophore and quencher is part of a good design

- Well-chosen fluorophores and quenchers are a prerequisite for successful RT qPCR in terms of
 - maximal fluorescence
 - minimal back ground
 - maximal signal-to-noise ration
 - maximal sensitivity

Design guidelines for fluorophores and quenchers

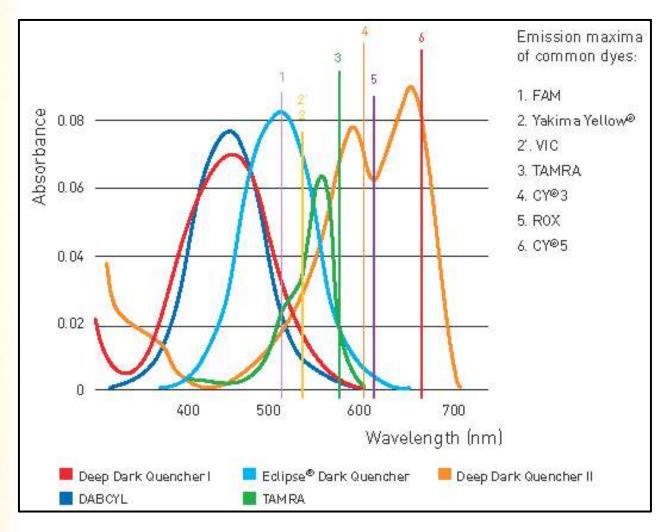
- Fluorophores
 - choose fluorophore that fits your real-time thermocycler
 - choose fluorophore with high level of fluorescence (weak fluorescence: JOE, TAMRA)
 - choose fluorophore with narrow spectrum and one emission maximum
 - avoid fluorophores that require manual coupling (i.e. ROX)
 - multiplex qPCR:
 - choose fluorophores that are spectrally well seperated

Quenchers

- choose quencher that fits fluorophore (emission spectrum of fluorophore must have substantial overlap with absorption spectrum quencher)
- take the fluorophore quencher combination with highest signal-to-noise ratio to obtain maximal sensitivity
- preferably take dark quenchers like BHQ1, 2 or 3 (are also very robust in synthesis)
- only in case of singleplex go for FAM-TAMRA as this is the most cost-effective combination
- multiplex qPCR
 - avoid the use of TAMRA. If you must use TAMRA, use it on all probes (click on TAMRA as quencher in plate set up software)
 - preferably use dark quenchers to avoid lost of sensitivity (click on None as quencher plate set up software)

Fluorophore has to fit real-time thermocycler

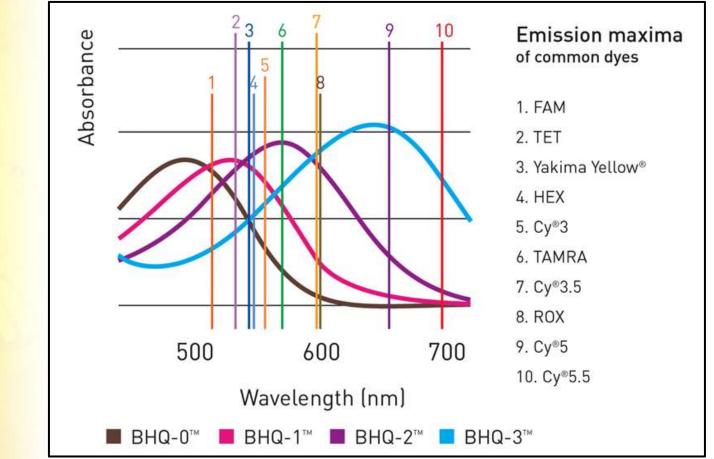
Thermocycler	Dye1	Dye2	Dye3	Dye4	Dye5	Dye6	Dye7
GeneAmp® 5700	FAM						
ABI Prism® 7000	FAM	VIC/YY/JOE	NED/TAMRA	ROX			
ABI Prism® 7700	FAM	VIC/YY/JOE/TET	NED/TAMRA	ROX			
ABI Prism® 7900	FAM	VIC/YY/JOE/TET	NED/TAMRA	ROX			
ABI Prism® 7300	FAM	VIC/YY/JOE	NED/TAMRA	ROX			
ABI Prism® 7500	FAM	VIC/YY/JOE	NED/TAMRA/Cy3	ROX/TR	Cy5		
i-cycler IQ®	FAM	VIC/HEX/TET/Cy3/YY	Cy3/TAMRA	ROX/TR	Cy5		
Mx3000P®	FAM	TET/YY	HEXJOE/VIC/YY	TAMRA	СуЗ	TR/ROX	Cy5/Alexa 350
Mx4000®	FAM	TET/YY	HEXJOE/VIC/YY	TAMRA	СуЗ	TR/ROX	Cy5
Rotorgene 2000	FAM	TET/JOE/VIC/YY	ROX/TAMRA/Cy3/TR	Cy5			
Rotorgene 3000	FAM	TET/JOE/VIC/YY	MAX/ROX/Cy3/TR	Cy5			
DNA Engine Opticon® 1							
DNA Engine Opticon® 2	FAM	TET/HEX/VIC/YY/TAMRA					
Chromo 4	FAM	TET/JOE/VIC/YY	ROX/TR	Cy5			
Smartcycler® 1	FAM	TET/JOE/VIC/YY	TAMRA/Cy3/Alexa	ROX/TR			
Smartcycler® 2	FAM	TET/Cy3/YY	ROX/TR	Cy5			
Lightcycler®	FAM	LC Red 640/ROX	LC Red 705/Cy5				
Lightcycler® 2.0	FAM	HEX/VIC/YY	LC Red 610	LC Red 640	LC Red 670	LC Red 705	
Quantica®	FAM	TET/HEX/VIC/YY/TAMRA					


Quencher has to fit fluorophore

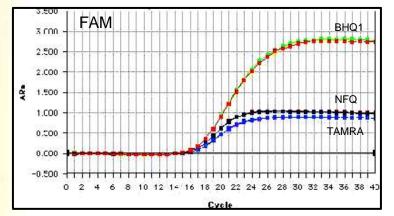
GENOMICS

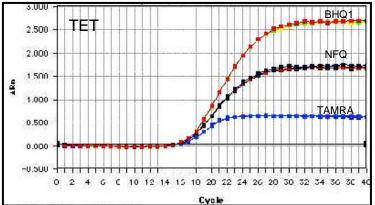
TEC

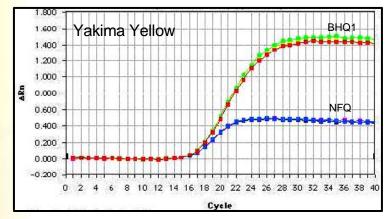
EGT GROUP


EU

Quencher has to fit fluorophore







High signal-to-noise ratio

GENOMICS

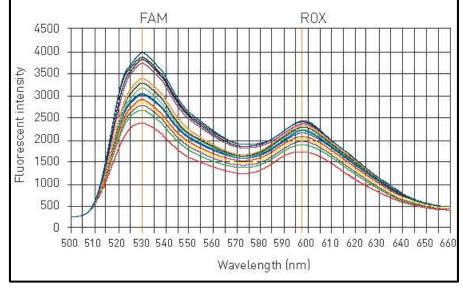

BHQ1 leads to the highest signalto-noise ratios and is superior to TAMRA and NFQ (EDQ)

Image: second constraints
Image:

EUROGENTEC

Synthesis probes

- Probes are synthesized starting from 3' end (quencher)
- Labelling process 5' end
 - manual coupling via activated fluorophores and a C-6 spacer
 - very pure oligos, but low yield
 - 5' and internal labelling (only on dT residu) possible
 - automatic coupling via labelled phosphoamidites
 - high purity in cobination with high yield
 - only 5'end labelling possiblek

Useful software and websites

- Design primers
 - any primer design software (freeware on web)
 - Oligo[®] 6.0 (MedProbe for Europe)
 - Primer 3.0 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi)
- Design Taqman[®] probes
 - Primer Express[®] (Applera)
 - BeaconDesigner[®] (Premier Biosoft Inc.)
- Design Molecular Beacons
 - BeaconDesigner® (Premier Biosoft Inc.)
- Design Scorpion primers
 - Scorpio (DNA software)
- Verification of design
 - Mfold (www.bioinfo.rpi.edu/applications/mfold/)
 - BLAST (www.ncbi.nlm.nih.gov/BLAST/)

Useful sources of information

Available on www.eurogentec.com Frequently asked questions for RT qPCR and qPCR Troubleshooting guide for RT qPCR and qPCR Your one-stop-shop real-time PCR supplier (in your conference bag)

YOUR ONE-STOP-SHOP REAL-TIME PCR SUPPLIER

