Quantification strategies in real-time RT-PCR with special focus on RNA quality, relative expression and data normalisation

qPCR Satellite Symposium Bio City Leipzig, 10 - 11th March 2005

PD Dr. Michael W. Pfaffl Physiology - Weihenstephan Center of Life and Food Sciences Technical University of Munich Weihenstephaner Berg 3 85350 Freising-Weihenstephan; Germany michael.pfaffl@wzw.tum.de www.gene-quantification.info

RNA quantity & RNA quality

Quantification Strategies in real time qRT-PCR

M.W. Pfaffl, BioSpektrum 2004 (Sonderausgabe PCR)

Quantification strategies in real-time RT-PCR

Absolute quantification using calibration curves

- recombinant DNA (recDNA) calibration curve (Pfaffl & Hageleit, Biotechnol.Lett. 2001)
- recombinant RNA (recRNA) calibration curve (Pfaffl & Hageleit, Biotechnol.Lett. 2001)
- calibration curve using a synthetic DNA oligo-nucleotide (Bustin, JME 2000)
- calibration curve using a synthetic RNA oligo-nucleotide (Bustin et al. 2000)
- calibration curve using a purified **RT-PCR product** (Einspanier et al. 1999)
- "Copy & Paste" of previously performed calibration curves (LC software)

Absolute quantification using calibration curves

 Calibration curve using a purified RT-PCR product or a synthetic ss/ds oligo-nucleotide two-step RT-PCR

advantages: quick, highly defined DNA content for the synthetic oligo disadvantages: instable, "often problems with re-amplification", "short" templates

 Calibration curve using a recombinant DNA (recDNA), e.g. plasmid DNA two-step RT-PCR advantages: very stabile, no problems with re-amplification, "mimic of mRNA" disadvantages: cloning, linearization and purification of recDNA

Calibration curve using a recombinant RNA (recRNA)
 one-step RT-PCR => recRNA and native mRNA undergoing RT and PCR in parallel
 advantages:
 mimics the natural mRNA situation best (recRNA = native mRNA)
 disadvantages:
 very instable recRNA, complicate cloning, linearization,
 purification of recRNA, storage problems, reproducibility (???)
 => storage of recRNA !!!

 "Copy & Paste" of previously performed calibration curves (e.g. LightCycler Software) advantages: very easy and very high reproducibility (at least for the calibration curve) disadvantages: do not covers variations in real RT-PCR experiment: RNA quality, slope, qPCR efficiency ??? batch to batch variations, etc. => truth ???

ER α intra-assay & inter-assay variation

variation on the basis of detected molecules using a recombinant plasmid DNA calibration curve intra-assay variation: within one run inter-assay variation: between different runs

Validation: absolute quantification of steroid receptors

	AR	ΕRα	ΕRβ	PR	
product length	172 bp	234 bp	262 bp	262 bp 227 bp	
detection limit	12 molecules	2 molecules	10 molecules	14 molecules	
quantification limit	120 molecules	165 molecules	106 molecules	760 molecules	
quantification range (test linearity)	120 - 1.20*10 ¹⁰ molecules (r = 0.998)	165 - 1.65*10 ⁹ molecules (r = 0.995)	106 - 1.06*10 ¹⁰ molecules (r = 0.996)	760 – 7.60*10 ⁹ molecules (r = 0.998)	
PCR efficiency	90.7%	81.2%	81.3%	93.9%	
intra-assay variation	31.2% (n = 3)	18.7% (n = 4)	17.6% (n = 4)	5.7% (n = 4)	
inter-assay variation	24.3% (n = 7)	28.6% (n = 4)	29.7% (n = 4)	25.7% (n = 4)	
Species specific T _{melt} (°C)					
Homo sapiens	85.4	86.0	[87.9]	83.5	
Rattus norvegicus	84.4	85.0	89.0	[82.9]	
Callithrix jacchus (primate)	85.0		[89.9]	83.9	
Bos taurus	85.5	85.3	90.1	83.8	
Ovis aries		85.4	90.5	83.1	
Sus scrofa	84.5	86.0	90.2	83.5	

Estrogen receptors (ER α & ER β) expression pattern in cattle tissues

Pfafflet al APMIS 2001

Relative Quantification

The mRNA expression is relative to <u>WHAT</u> ???

- relative to a <u>non treated control</u>
- relative to a <u>time point zero</u>
- relative to <u>another gene of interest</u>
- relative to the mean expression of a target gene
- relative to an <u>universal calibration curve</u>
- relative to the expression of <u>one constant expressed HKG</u>

GAPDH, tubulins, various actins, albumins, cyclophilin, micro-globulins, histone subunits, ribosomal units (18S or 28S rRNA),etc.

• relative to a <u>HKG Index</u> containing more HKGs (> 3)

geNorm (Vandesompele et al., Genome Biology, 2002) BestKeeper (Pfaffl et al.; Biotechnology Letters 2004) Normfinder (Andersen et al., Cancer Research 2004) statistical modeling (Szabo et al., Genome Biology 2004)

• etc. ???

Normalisation strategies

According to known amounts of extracted RNA

(RIN quality check, molecules/ng RNA; ag transcript/ng RNA)

According to mass or volume of extracted tissue

(molecules/mg tissue; ag transcript/mg tissue; transcript/cells)

According to one known and NOT regulated HKG

GAPDH, tubulins, actins, albumins, cyclophilin, micro-globulins, histone subunits, ribosomal units (18S or 28S rRNA),.....

According to a <u>HKG Index containing more HKGs (> 3)</u>

geNorm (Vandesompele et al. 2002, Genome Biology)

Accurate normalization of real-time quantitative RT-PCR data by geometric veraging of multiple internal control genes.

BestKeeper (Pfaffl et al. 2004; Biotechnology Letters 2004)

Determination of most stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper Excel based tool using pair-wise correlations.

Normfinder (Andersen et al., 2004 Genome Biology)

Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization.

Statistical modeling for selecting housekeeper genes

(Szabo et al. 2004, Genome Biology)

Relative Quantification in real time qRT-PCR

"Delta-delta method" for comparing relative expression results between treatments in real-time PCR

presented by PE Applied Biosystems (Perkin Elmer, Forster City, CA, USA)

ABI Prism 7700 Sequence detection System User Bulletin #2 (2001)

Relative quantification of gene expression. http://docs.appliedbiosystems.com/pebiodocs/04303859.pdf

 $expression_{ratio} = 2 - [\Delta CP sample - \Delta CP control] \\ expression_{ratio} = 2 - \Delta \Delta CP \\ = 2 + \Delta \Delta CP$

Livak KJ, Schmittgen TD. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 ^{(- delta deltaC(T))} method. Methods. 2001 **25(4):** 402-408.

"Delta-delta method" for comparing relative expression results between treatments in real-time PCR

presented by ABI (Applied Biosystems Inc.)

<u>assumptions:</u> E = 2 & $\triangle CP$ is constant over a wide range

expression relative to the time point zero & normalised by a HKG:

TNFα mRNA expression in cultured leukocytes after LPS stimulation: white blood cells [WBC] vs. somatic milk cells [SMC] isolated blood monocytes vs. isolated milk macrophages

PCR Efficiency = 2 n = 6 mean \pm sem

Relative Quantification in real time qRT-PCR

Tissue *"background"* interfere with real-time PCR efficiency and amplification fidelity

IGF-1 mRNA amplification in three cattle tissues

Efficiency variation in real-time RT-PCR

Detection Cycle (n) PCR efficiency	10	15	20	25	30	35
2.00	-	-	-	-	-	-
1.97	16 %	25 %	35 %	46 %	57 %	70 %
1.95	29 %	46 %	66 %	88 %	113 %	142 %
1.90	67 %	116 %	179 %	260 %	365 %	500 %
1.80	187 %	385 %	722 %	1 290 %	2 260 %	3 900 %
1.70	408 %	1 045 %	2 480 %	5 710 %	13 000 %	29 500 %
1.60	920 %	2 740 %	8 570 %	26 400 %	80 700 %	246 400 %

Table 1: Errors of quantification relative to a theoretical PCR efficiency of 2.00

Error calculation: (2ⁿ/Eⁿ-1) x 100

Example:

When the difference in PCR efficiency is 0.2 between two samples in the same run and both samples are detected in cycle 25 a more than 10-fold difference in the amount of the samples will be calculated.

Roche Diagnostics, LC rel. Quantification software, March 2001

PCR inhibitors:

Hemoglobin, Urea, Heparin Organic or phenolic compounds Glycogen, Fats, Ca²⁺ **Tissue matrix effects** Laboratory items, powder, etc.

PCR enhancers:

DMSO, Glycerol, BSA Formamide, PEG, TMANO, TMAC etc. **Special commercial enhancers:** Gene 32 protein, Perfect Match, Taq Extender, AccuPrime, *E. Coli* ss DNA binding

Relative quantification of a target gene versus a reference gene (housekeeping gene)

Single data (n = 1) e.g. array results:

Roche Diagnostics, LC relative Quantification software, March 2001

Relative quantification of a target gene versus a reference gene (housekeeping gene)

single data (n = 1) e.g. array results:

multiple data (1 < n < 100) e.g. experimental groups via REST-XL[©]*:*

E ΔCP_{ref} (*MEAN control* – *MEAN sample*)

Pfaffl et al., Nucleic Acids Research 2002

Influence of total RNA quality, quantity and purity on qRT-PCR results total RNA extracted bovine WBC analyzed in Bioanalyzer 2100

V. Walf, S. Huch, MW. Pfaffl, 2005

RIN in different bovine tissues (Box Plot)

10 ·

S. Fleige & MW. Pfaffl, 2005

Enzymatic or UV degradation of tissue extracted total RNA

Influence of total RNA quality on qRT-PCR results

28S	n.s.		
Interleukin-1beta	P < 0.001		
beta-Actin	P < 0.01		
18S	P < 0.001		

Influence of total RNA quality on qRT-PCR CP (Ct)

IL-1: Crossing Point

Influence of total RNA quality on qRT-PCR efficiency

28S: Amplification

Relative quantification using efficiency corrected calculation

Advantages:

- each sample derived from identical total RNA (one-step quantification) or cDNA source (two-step quantification) = identical inhibitors and enhancers
- tissue specific matrix effects are given, but not existent in relative quantification
- total RNA quantity, RT efficiency and cDNA quantity are minor relevant
- effect of total RNA quality and influence on qRT-PCR have to be tested in detail
- optimized assays are **highly reproducibility** (variations only given by researcher, kit, robot and real-time platform)
- each sample will be **normalised with HKG** or better by a **HKG INDEX**
- **no production of a calibration curve:** e.g. cloning, linearization or purification of calibration curve material
- no data conversion: molecules, concentrations or molarities
- => direct procedure: measured data were inserted in mathematical model
- => relative quantification by software applications, e.g. qGene, REST, LightCycler
- => automatic calculation => bio-informatics session

Disadvantages:

• No information about the effective molecule concentration present in the tissues (molecules/mg tissue; molecules/ng RNA; molecules /cell, etc.)

Thank you team ! Thank you for your attention !

