

Accurate gene expression profiling – Facing the issues of normalisation and efficiency

Tania Nolan tnolan1@europe.sial.com

sigma-aldrich.com

Variations in RNA extraction

Favourite QRT-PCR Priming strategies

All onto total RNA

Data from participants of yahoo groups; qpcrlistserver Bustin, Benes, Nolan, Pfaffl (2005) JME in press

Random primed RNA (2x) dilution series (QPCR NHE1)

RNA serial dilution

Random primed RNA (2x) dilution series (QPCR NHE1)

Standard Curve

ALDR

Random Priming RT and QPCR (100 fold dilutions, ß-actin) is reproducibly none linear

RNA serial dilution 100ng to 1pg

Gene quantification is not reproducible between different RT reactions

Gene specific priming RT and QPCR (10 fold dilutions, GAPDH)

From RNA to cDNA to gene expression data

o Random priming of total RNA dilutions did not give a linear response

Random primed RT reactions appear to be reproducibly none linear from

reaction to reaction when run together

o Random primed RT reactions do not appear to be reproducible from

reaction to reaction when run on different occasions

✓ Specific priming of RNA dilutions appeared to give a linear response

From RNA to cDNA to gene expression data

Further Study:

- Investigate different RT priming strategies
- Investigate priming total RNA and mRNA
- Investigate the effects of these variables on data interpretation
- Investigate effect of template structure on RT- QPCR sensitivity and efficiency

Comparing RT Priming Strategies

GAPDH

Constant RNA input concentration

Sensitivity and efficiency using mRNA - GAPDH 3 100

From RNA to cDNA to gene expression data - GAPDH

GAPDH Comparisons:

- Using total or mRNA specific priming appears most sensitive
- When priming strategies are compared using mRNA serial dilutions specific priming appears most sensitive and results in highest amplification efficiency

Total RNA vs mRNA - IGF-I

Sensitivity and efficiency using mRNA – IGF1

Sensitivity and efficiency using mRNA – IGF1

From RNA to cDNA to gene expression data – IGF1

IGF1 Comparisons:

- All priming strategies relatively insensitive
- Using total or mRNA Oligo dT priming appears most sensitive
- When priming strategies are compared using mRNA serial dilutions Oligo-dT or random priming appear most sensitive and results in highest amplification efficiency
- Specific priming is very poor (slight improvement on mRNA)

Data interpretation

Samples

IGF-I Total RNA

CE CE

IGF-I/GAPDH total RNA

See Co

Samples

IGF-I/GAPDH mRNA

Influence of priming strategy on data interpretation

Using constant input total or mRNA

- Interpretation of normalised data using random or oligo dT priming results in similar interpretation
- Specific priming results in great variation (due to IGF1 priming)
- mRNA appears to predict lower relative quantities than total RNA (by around 100 fold)

IGF1 structure

Comparing priming: IL-15

One tube assay (RNA dilutions) -Specific primers

Slope = -2.9

Two tube assay (cDNA dilutions) -Random primers

Slope = -3.7

SIGMA-ALDRICH

Influence of target structure on priming efficiency

Using total RNA or cDNA dilution series

- Random priming appears to be more forgiving of secondary structure
- Specific primers need to be located within open regions (at 60°C or RT temperature)

SIGMA

GAPDH 3'

SIGMA-ALDRICH

Total RNA target GAPDH specific primed dilution series

Assays designed by Natalie Simpson at www.designmyprobe.com

QRT-PCR protocol considerations

- When possible quantify input RNA
- Include a constant RNA amount into each RT
- Correct for RT batch to batch variations (*Placenta 26 (2005)* 93-98)

QRT-PCR protocol considerations

For unknown amounts of RNA:

- Design specific reverse primers to open regions of transcript (at RT temperature) [www.designmyprobe.com]
- Use specific primers to increase sensitivity (especially when a large difference in transcript quantities is expected)
- Or use mRNA since all priming strategies appear to give limited linear response
- Whichever system is chosen check linearity and dynamic range of priming strategy for all genes to be measured.

Many Thanks to:

- Prof Stephen Bustin (QMUL, London, UK)
- Dr Reinhold Mueller and Gothami Padmabandu (Stratagene, La Jolla, USA)
- Dr Helen Lacey and Prof Colin Sibley (Manchester University Medical School, UK)
- Natalie Simpson (Sigma-Genosys, Cambridge, UK)

