Expression profiling of *Arabidopsis* TF genes by qPCR

Tomasz Czechowski
MPI of Molecular Plant Physiology (MPI-MP)
Molecular Plant Nutrition Group
Nitrogen metabolism in plants

Nitrogenous fertilizers on earth

Arabidopsis thaliana (L.)

220 million tons in 2050, loss 10 - 80%

Primary N acquisition and assimilation in plants are both tightly regulated on transcriptional level, but NONE factors involved in those processes are identified so far....

130 Mb full genome sequence (~24000 genes)
Arabidopsis transcription factors

- TFs - sequence specific DNA-binding proteins capable to repress/activate transcription of their target genes
- Most are regulated in spatial and/or temporal manner by internal or environmental signals

• LOWLY ABUNDANT TRANSCRIPTS!

2200 TF genes (9% of the genome) grouped into 53 different families

(AGRIS database (http://arabidopsis.med.osu.edu/AtTFDB/) and http://genetics.mgh.harvard.edu/sheenweb/AraTRs.html)

• Homo sapiens (6.1%)
• D. melanogaster (4.6%)
• C. elegans (3.5%)
• S. cerevisiae (3.5%)

Just about 7% of them characterised functionally, mostly by forward genetics approaches
Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes

Tomasz Czechowski, Rajendra P. Bari, Mark Stitt, Wolf-Rüdiger Scheible* and Michael K. Udvardi*
Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany

Received 18 November 2003; revised 20 January 2004; accepted 27 January 2004.
*For correspondence (fax +49 331 5678 250; e-mail Scheible@mpimp-golm.mpg.de, Udvardi@mpimp-golm.mpg.de).
equal weight, usually Trizol method

RNA quality and quantity- NanoDrop spec., Agilent 2100

qPCR with intron-designed primers - no product

mRNA (optional, Oligotex, batch protocol)

cDNA quality - qPCR with one of the HK genes / spiked cRNA
Ct +/- 1 for all samples; qPCR to check 3'/5' ratio,
both primer pairs for GAPDH - 1,3kb; acceptable ratio: 1- 4

Tm 60 +/- 2 C; GC content- 45 to 55%, amplicon length 60-150bp, spanning exon/exon junctions;
specific - TAIR Blast - single hits
Evolution P3 Liquid Handling system (PE):

- 6 x 384 well plates with TF and HK gene primers (4 or 2µl)
- cDNA + SYBRGreenI (6 or 3µl)

27900HT systems (AB):

- full TF screen (2256 genes) for one sample in just one working day
- costs = 250€ (5µl) or 500€ (10µl)
Efficiency of PCR reactions

Efficiency - LinRegPCR (Ramakers et al. 2003)

Efficiency - Dilution method (Pfaffl et al. 2001)

Very similar results for 46 primer pairs tested - usually higher E values estimated by dilution method

Czechowski et al., 2004; The Plant Journal
Calculation of Expression Ratios

Modified delta C_T method

1. $\Delta C_T = C_T (GOI) - C_T (HK/cRNA)$

2. $\Delta\Delta C_T = \Delta C_T (B) - \Delta C_T (A)$

3. $B/A \text{ ratio} = (1+E)^{-\Delta\Delta C_T}$

Czechowski et al, 2004; The Plant Journal
Primers quality

1. Dissociation curve of amplicons

2. PCR products on 4% agarose gels

3. Direct sequencing from PCR reaction: for 17 close homologues all sequences gave specific hits.

Czechowski et al, 2004; The Plant Journal
Technical precision

Intra-assay variation: 2 times the same cDNA for 101 genes

Inter-assay variation: 2 different cDNA synthesis for 298 genes

Inter-assay variation for Affymetrix DNA chip for 277 genes

„Absent“

Czechowski et al, 2004; The Plant Journal
Sensitivity

(A) Relationship between amplification kinetics (C_{t}) and copy number of a luciferase gene (o) and an intragenic DNA fragment (\textcircled{o}) in reactions containing a complex pool of 1ng *Arabidopsis* cDNA.

Detection limit = one transcript in 1000 cells

(Ruan et al., 1998 AGI, 2000; Haas et al., 2002)

Czechowski et al., 2004; The Plant Journal
Robustness

Linear Relationship between the expression level, $2^{(40-Ct)}$, and the fraction of root or shoot cDNA in a mixture of the two totalling 1 ng, for the four TF genes

Czechowski et al, 2004; The Plant Journal
Comparison to Affymetrix ATH1 array hybridisation

Raw, normalised signals compared (1083 genes)

Expression ratios (shoot/root)

Czechowski et al, 2004; The Plant Journal
The overlap between 2 techniques rapidly decreases when the fraction of genes that were called 'absent' by Affymetrix technology, increases.

Czechowski et al, 2004; The Plant Journal
Example results

A – different plant organs (1243 genes)

B – different growth conditions, whole seedlings (1243)

Relative mRNA level \([(1+E)^\Delta C_T]\) under N deprivation

- \(10^{-6}\)
- \(10^{-5}\)
- \(10^{-4}\)
- \(10^{-3}\)
- \(10^{-2}\)
- \(10^{-1}\)
- \(10^{0}\)

Relative mRNA level \([(1+E)^\Delta C_T]\) in full nutrition

- \(10^{-6}\)
- \(10^{-5}\)
- \(10^{-4}\)
- \(10^{-3}\)
- \(10^{-2}\)
- \(10^{-1}\)
- \(10^{0}\)

Relative mRNA level \([(1+E)^\Delta C_T]\) after nitrate replenishment

- \(10^{-6}\)
- \(10^{-5}\)
- \(10^{-4}\)
- \(10^{-3}\)
- \(10^{-2}\)
- \(10^{-1}\)
- \(10^{0}\)

Relative mRNA level \([(1+E)^\Delta C_T]\) under N deprivation

- \(10^{-6}\)
- \(10^{-5}\)
- \(10^{-4}\)
- \(10^{-3}\)
- \(10^{-2}\)
- \(10^{-1}\)
- \(10^{0}\)
Current applications

- Shoot - , root - , silique - , seed - specific TF genes
- Seed development
- Heterosis
- Macronutrient signalling: N, P, S, CHO
- Salt and osmotic stress
- Biotic stress
- Seed dormancy

(AG Udvardi, AG Scheible, and international collaborators)
Future qRT-PCR development for other model plant species

Oryza sativa (Rice) ~2500 TFs

Medicago truncatula ~3000 TFs

Lotus japonicus ~3000 TFs
AtGenExpress Initiative - Arabidopsis gene expression atlas

Over 700 ATH1 arrays (23,500 genes)

- Developmental series
- Shoot and root abiotic stress series
 - Hormone series
 - Photomorphogenic Light series
 - Biotic stress series
- Nutrient stress series
 (MPI-MPP Scheible et al., 2004, Scheible et al., unpublished)
- Diurnal rhythm
 (MPI-MPP, Bläsing et al. Unpublished)

(Altmann et al., 2004; http://web.uni-frankfurt.de/fb15-botanik/mcb/AFGN/atgenex.htm)
Newly identified HK genes outperform „traditional“ ones w.r.t. expression stability

Gene selection from ATGenExpress series:

1. Mean expression value (MV)
2. Standard deviation (SD)
3. Coefficient of variation (COV) = SD/MV
4. At least 80% „Present“ calls within series
5. Select gene with lowest COV
6. Sort according to ATH1 expression values

(WR Scheible, manuscript in preparation)

(A) Traditional genes: ACT2 (black); TUB6 (red); EF-1a (green); UBQ10 (cyan); and GAPDH (blue).
(B) Novel genes, i.e. At4g34270 (black); At1g13320 (red); At1g59830 (green); At4g33380 (cyan) and At2g28390 (blue).
Validation by qPCR for 18 selected genes

Primer design
20 RNA samples - various organs, abiotic stresses,
RT with spiked cRNA (LjLb2 transcript),
\[\Delta C_t = C_t (HK) - C_t (cRNA) \]

<table>
<thead>
<tr>
<th>AGI</th>
<th>Annotation</th>
<th>Mean (\Delta C_t)</th>
<th>Mean ((1+E)^{\Delta C_t})(x10^6)</th>
<th>Relative Expression</th>
<th>SE (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT4G05320</td>
<td>UBIQ10</td>
<td>8.76</td>
<td>4270</td>
<td>1</td>
<td>6.9 E-04</td>
</tr>
<tr>
<td>AT5G60390</td>
<td>EF1α</td>
<td>9.07</td>
<td>3660</td>
<td>0.858</td>
<td>6.7 E-04</td>
</tr>
<tr>
<td>AT1G13440</td>
<td>GADPH</td>
<td>9.50</td>
<td>2488</td>
<td>0.583</td>
<td>3.5 E-04</td>
</tr>
<tr>
<td>AT4G27960</td>
<td>UBC9</td>
<td>10.98</td>
<td>1160</td>
<td>0.272</td>
<td>1.5 E-04</td>
</tr>
<tr>
<td>AT3G18780</td>
<td>ACT2</td>
<td>11.74</td>
<td>917</td>
<td>0.215</td>
<td>1.9 E-04</td>
</tr>
<tr>
<td>AT5G46630</td>
<td>Clathrin adapter complex subunit</td>
<td>12.71</td>
<td>421</td>
<td>0.099</td>
<td>3.9 E-05</td>
</tr>
<tr>
<td>AT5G08290</td>
<td>YLS8</td>
<td>13.60</td>
<td>343</td>
<td>0.081</td>
<td>3.9 E-05</td>
</tr>
<tr>
<td>AT4G33880</td>
<td>Expressed</td>
<td>13.45</td>
<td>342</td>
<td>0.080</td>
<td>3.2 E-05</td>
</tr>
<tr>
<td>AT2G32170</td>
<td>Expressed</td>
<td>14.47</td>
<td>246</td>
<td>0.058</td>
<td>3.3 E-05</td>
</tr>
<tr>
<td>AT4G34270</td>
<td>TIP41-like</td>
<td>13.68</td>
<td>243</td>
<td>0.057</td>
<td>2.9 E-05</td>
</tr>
<tr>
<td>AT5G25760</td>
<td>UBC</td>
<td>13.82</td>
<td>190</td>
<td>0.044</td>
<td>2.6 E-05</td>
</tr>
<tr>
<td>AT1G13320</td>
<td>PDF2</td>
<td>13.41</td>
<td>189</td>
<td>0.044</td>
<td>2.7 E-05</td>
</tr>
<tr>
<td>AT2G28390</td>
<td>SAND family</td>
<td>14.69</td>
<td>167</td>
<td>0.039</td>
<td>1.9 E-05</td>
</tr>
<tr>
<td>AT4G26410</td>
<td>Expressed</td>
<td>14.11</td>
<td>132</td>
<td>0.031</td>
<td>1.7 E-05</td>
</tr>
<tr>
<td>AT3G01150</td>
<td>PTB</td>
<td>18.56</td>
<td>40</td>
<td>0.009</td>
<td>4.7 E-06</td>
</tr>
<tr>
<td>AT5G55840</td>
<td>PPR repeat</td>
<td>18.59</td>
<td>38</td>
<td>0.009</td>
<td>4.4 E-06</td>
</tr>
<tr>
<td>AT1G58050</td>
<td>Helicase</td>
<td>16.81</td>
<td>36</td>
<td>0.008</td>
<td>3.9 E-06</td>
</tr>
<tr>
<td>AT3G53090</td>
<td>UPL7</td>
<td>19.70</td>
<td>22</td>
<td>0.005</td>
<td>2.1 E-06</td>
</tr>
<tr>
<td>AT5G15710</td>
<td>F-box family</td>
<td>17.53</td>
<td>15</td>
<td>0.003</td>
<td>1.9 E-06</td>
</tr>
<tr>
<td>AT4G38070</td>
<td>bHLH</td>
<td>22.46</td>
<td>6</td>
<td>0.001</td>
<td>1.1 E-06</td>
</tr>
<tr>
<td>AT5G12240</td>
<td>Expressed</td>
<td>21.91</td>
<td>1.6</td>
<td>0.00038</td>
<td>1.8 E-07</td>
</tr>
<tr>
<td>AT1G62930</td>
<td>PPR repeat</td>
<td>24.02</td>
<td>0.4</td>
<td>0.00009</td>
<td>6.3 E-08</td>
</tr>
<tr>
<td>AT3G32260</td>
<td>Hypothetical</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>AT2G07190</td>
<td>Hypothetical</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>AT1G47770</td>
<td>Hypothetical</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

(WR Scheible manuscript in preparation)
geNorm analysis (Vandesompele *et al.*, 2002)

Average expression stability of control genes, measured using GeNorm software

(A) all
(B) without mature seed sample

(WR Scheible, manuscript in preparation)
Acknowledgements

Many thanks to all the people without whom this work could not be done

Supervision of the project:

• Dr. Michael Udvardi
• Dr. Wolf-Rüdiger Scheible (also for providing ATH1 data for the analysis)

Collaborators in TF profiling:

• Dr. Rosa Morcuende, Rajendra Bari, Dr. Daniel Osuna and Tomasz Kobylko
 (Molecular Genomics Group)
• Monika Bielecka (Amino Acids and Sulfur Metabolism Group)
• Dr. Wenming Zheng and Anna Blacha (Molecular Plant Nutrition Group)

Robotization:

• Dr Yves Gibon (System Regulation Group)

Funding

• MPG and Prof Dr Mark Stitt (Managing Director) for the funding: the primers, all real-time PCR systems and Evolution P3 robot
Thanks for Your attention !!!